Search results

Search for "cobalt (Co)" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • . Based on this understanding, we propose Co on MoS2 as a suitable candidate for advanced interconnects, while Ru on MoS2 is more suited to catalysis applications. Keywords: cobalt (Co); 2D materials; molybdenum disulfide (MoS2); ruthenium (Ru); thin film nucleation; Introduction Layered materials that
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • (itaconic acid)–poly(methacrylic acid)-grafted-nanocellulose/nanobentonite composite as an efficient adsorbent for the removal of cobalt (Co(II)) from aqueous solution. This could increase the availability of the multi-carboxy functional moiety, which is covalently bonded to the inorganic matrix, to
PDF
Album
Review
Published 19 Sep 2018

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • MWCNTs, for gas sensing applications. Experimental Preparation of metal-decorated MWCNT-based chemiresistors MWCNT networked films were grown by chemical vapor deposition (CVD) directly onto the surface of an alumina substrate that was previously coated with a cobalt (Co) sputtered catalytic layer (≈6 nm
PDF
Album
Full Research Paper
Published 10 Mar 2017

Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts

  • Jing Wang,
  • Ke Feng,
  • Hui-Hui Zhang,
  • Bin Chen,
  • Zhi-Jun Li,
  • Qing-Yuan Meng,
  • Li-Ping Zhang,
  • Chen-Ho Tung and
  • Li-Zhu Wu

Beilstein J. Nanotechnol. 2014, 5, 1167–1174, doi:10.3762/bjnano.5.128

Graphical Abstract
  • spacing of about 0.191 and 0.203 nm can be assigned to the (101) and (002) planes of metallic cobalt Co, space group P63/mmc (JCPDS card 05-0727). When G-SO3 was added, the TEM images exhibited much difference. Firstly, nanoparticles were formed but dispersed on G-SO3 sheets instead. Secondly, the sizes
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2014

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • applications. Doped-ferrite nanoparticles The magnetization of ferrite nanoparticles can be further enhanced by doping the ferrite with ferromagnetic elements such as manganese (Mn), cobalt (Co) or nickel (Ni) [23][27][45]. Among the singly-doped ferrite MNPs, MnFe2O4 nanoparticles were found to exhibit the
PDF
Album
Review
Published 16 Dec 2010

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • recombination rate is lower than the rate of electron transfer to adsorbed molecules. There are reports on the enhancement of visible light absorption in ZnO by doping with, e.g., cobalt (Co) [18], manganese (Mn) [19], lead (Pb) and silver (Ag) [16], etc. Photocatalytic activity comparable to doped ZnO was also
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities